Geometric Probabilities for an Arbitrary Convex Body of Revolution in E3 and Certain Lattices
نویسندگان
چکیده
Problems of geometric probability for an arbitrary convex body of resolution in the euclidean space E3 has been investigated in [1]. In [9] Buffon’s problem is solved for a lattice of right-angled parallelepipeds in the 3-dimensional space. In this note we want to use the results in [5] for to solve problems of intersection for a particular lattice that we describe: the fundamental cell C0 of the lattice R is a right-angled prism of height c and whose basis is the following: Let K be an arbitrary convex body of resolution with centroid G and oriented axis of rotation r. The line r is determined by the angle θ between r and the z-axis and by the angle φ between the projection of r on the xy-plane and the x-axis. Hence r = r(θ, φ). Then the length L of the projection of K on the z-axis is given by
منابع مشابه
FUZZY CONVEX SUBALGEBRAS OF COMMUTATIVE RESIDUATED LATTICES
In this paper, we define the notions of fuzzy congruence relations and fuzzy convex subalgebras on a commutative residuated lattice and we obtain some related results. In particular, we will show that there exists a one to one correspondence between the set of all fuzzy congruence relations and the set of all fuzzy convex subalgebras on a commutative residuated lattice. Then we study fuzzy...
متن کاملExistence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials
Introduction Let be a nonempty subset of a normed linear space . A self-mapping is said to be nonexpansive provided that for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...
متن کاملAlternative approaches to obtain t-norms and t-conorms on bounded lattices
Triangular norms in the study of probabilistic metric spaces as a special kind of associative functions defined on the unit interval. These functions have found applications in many areas since then. In this study, we present new methods for constructing triangular norms and triangular conorms on an arbitrary bounded lattice under some constraints. Also, we give some illustrative examples for t...
متن کاملIdeal of Lattice homomorphisms corresponding to the products of two arbitrary lattices and the lattice [2]
Abstract. Let L and M be two finite lattices. The ideal J(L,M) is a monomial ideal in a specific polynomial ring and whose minimal monomial generators correspond to lattice homomorphisms ϕ: L→M. This ideal is called the ideal of lattice homomorphism. In this paper, we study J(L,M) in the case that L is the product of two lattices L_1 and L_2 and M is the chain [2]. We first characterize the set...
متن کاملABCD matrix for reflection and refraction of laser beam at tilted concave and convex elliptic paraboloid interfaces and studying laser beam reflection from a tilted concave parabola of revolution
Studying Gaussian beam is a method to investigate laser beam propagation and ABCD matrix is a fast and simple method to simulate Gaussian beam propagation in different mediums. Of the ABCD matrices studied so far, reflection and refraction matrices at various surfaces have attracted a lot of researches. However in previous work the incident beam and the principle axis of surface are in parallel...
متن کامل